“ 激光通信技术以其高带宽、高安全性以及设备体积小等特点有望超过其他无线通信技术成为卫星互联网的主流通信方式。目前激光通信的主要技术瓶颈集中在窄光束长距离发散和大气衰减上,主要的技术有捕捉跟踪技术、通信收发技术、大气补偿技术、光机电设计技术、系留气球中继技术、平流层飞艇中继技术。激光通信的技术趋势就是向高速率、网络化、多用途以及一体化发展。激光通信目前受制于其技术瓶颈,主要应用场景还集中在星间激光通信上。星间卫星发展以低轨道卫星为主,为争夺轨道和频谱资源,中国2020年11月成功申请“GW”星座,预计发射近地卫星12992颗。得益于卫星互联网的蓬勃发展,激光通信技术也大量应用于星间信息传输,而且激光通信无需申请许可证,未来有希望大规模在星间运用从而放缓频谱资源的争夺。据测算,到2027年中国“GW”激光载荷市场规模将达约800亿。”
一、激光通信的技术发展趋势
1.1 激光通信的技术优势及瓶颈1.1.1 激光通信以其高带宽、高安全性以及设备体积小等优势有望成为发展主流激光通信的通信容量大,也即是传输速率更快。激光的频率比微波要高许多,作为通信的载波有更宽的利用频带。目前无线激光通信工作频段主要在365~326 THz(对应波长范围光波长范围多在820 nm~920 nm),设备间无射频信号干扰。从现有技术来说,光波作为信息载体可传输达10Gbit/s的数据码率,采用名为波分复用技术的方法还能进一步提高(将两种或多种不同波长的光载波信号在发送端经复用器汇合在一起,传输后在接收端经分波器将各种波长的光载波进行分离并恢复信号)。激光通信技术结合了无线电通信和光纤通信的优点,以激光为载波进行通信。激光通信技术具有抗干扰能力强、安全性高、通信速率高、传输速度快、波段选择方便及信息容量大的优势,其特点是系统体积小、重量轻、功耗低、施工简单、灵活机动,在军事和民用领域均有重大的战略需求与应用价值。另一方面,激光的波长短、穿透力强,方向性好且能量集中,这些优点也使得接收望远镜口径可以减小,摆脱了无线电波通信系统巨大的碟形天线,接收系统也可以做的体积更小、重量更轻。这些也使得激光通信相关系统、设备的建造和维护费用相对低廉。表1 各种通信方式特点对比1.2 激光通信技术的发展趋势
激光通信的技术趋势就是向高速率、网络化、多用途以及一体化发展。1.2.1 高速率
随着空间激光通信高速调制解调和传输技术的快速发展,未来星地激光通信链路速率有望达到100Gb/s量级。高速激光通信采用高阶调制方式如正交相移键控(QPSK)、正交振幅调制(QAM)和复用方式如波分复用(WDM)、时分复用(TDM)、轨道角动量复用(OAM),短距离(<1km)速率可达Tb/s量级。1.2.2 网络化
随着全球化和信息技术的发展,亟需建设具有不依托地面网络、无缝覆盖全球、高带宽和抗毁性能的空间网络。因此,依托空间激光通信技术实现的天基宽带传送网络是今后发展的重要趋势。空间激光通信技术逐渐从点对点模式向中继转发和构建激光网络的方向发展。由于激光网络建设的主要难点在于激光发散角小、光信号动态接入以及受空间环境影响大等,因此构建激光通信网络时,需突破“一对多”的激光通信技术难题、研究动态路由解决接入方案、寻求激光通信和微波联合通信体制。长春理工大学提出的采用旋转抛物面结构设计一点对多点光学收发天线,实现多颗卫星间激光通信组网,光学原理简单,是探索解决这一难点的重大突破。1.2.3 多用途
随着空间激光通信技术的逐渐成熟,空间激光通信的高调制速率、远传输距离和低能耗的优点逐渐凸显。目前,空间激光通信技术已广泛应用于星间、星空、空空、空地等链路的宽带数据传输,并逐渐向深空探测、水下和地面接入通信扩展,用途越来越广。深空探测是人类对月球、远距离天体或空间开展的探测活动,是了解太阳系及宇宙,揭示宇宙起源与演变,拓展人类生存空间的必然选择。月球探测工程的实施拉开了我国深空探测的序幕,随后又实施了火星探测工程。水下无线光通信作为一种新兴通信技术,具有容量大、带宽高、保密性好、抗干扰能力强等优势,已成为世界大国竞相发展的一项重要通信技术。利用可见光进行数据通信的无线光传输技术兼具照明、通信和控制定位等功能,易与现有基础照明设施相融合,且符合国家节能减排的战略思想,逐渐成为未来智能时代超高速泛在光联网的主要宽带传输方法。另外,在一些无法铺设光缆的特殊应用场合,如海岛之间、城市楼宇间、野外复杂环境等,空间激光通信技术可起到光纤通信技术所无法替代的作用。1.2.4 一体化
由于激光在高速通信和精密测距方面具有优势,近年来激光测距与通信一体化技术越来越受到重视。激光测距与通信一体化设计是以高速通信为主,兼顾精密测距,使用同一束激光和硬件平台实现测距和信息传输,进而实现同一套设备完成测距和通信的双重功能。2013年NASA的LLCD系统已经成功实施月地高速激光通信与高精度测距的在轨演示验证,测距精度达到3cm;2014年,北京遥测技术研究所完成了基于相干通信的测距和高速通信一体化的设计;2015年,长春理工大学提出了空间目标测距、成像、通信一体化方案,其中激光通信信标光发射/接收和激光测距光发射/接收共用一个光学天线。此外,激光和微波通信技术的融合,也是目前学术研究的热点,主要包括激光与微波收发融合、数据处理融合、微波信号的激光调制和产生等。目前,微波光子技术逐渐发展成熟,并已应用于雷达信号的激光传输和处理,未来该技术也将在激光与微波融合通信系统中应用。激光/微波混合传输的主要思想是通过在激光链路连接的两个节点间建立额外的微波链路,在天气恶劣的条件下使用微波链路进行辅助传输来保障节点间通信不间断。2006年,美国宾夕法尼亚州立大学的科学家进行了空载激光/微波混合传输的评估研究。研究发现激光链路受云层影响较大,主要是由于云颗粒带来的衰减及散射,但当微波链路引入后可以大幅提升整体链路的可用度。通常的激光/微波混合传输方式为激光链路可以通时采用激光传输,无法通时改为微波链路进行数据传输。该种方法不仅不能有效利用整体信道带宽,在激光和微波链路进行切换的过程中也容易带来不必要的传输中断。2009年弗吉尼亚大学的科学家提出了一种符号率自适应联合编码方案,使得微波链路和激光链路同时高效工作。2010年马萨诸塞大学的科学家提出了混合信道码,通过利用非均匀码及速率兼容LDPC码,在提升通信容量的同时达到了电信级的可靠性(99.999%)。二、激光通信的应用前景
2.1 现状——由于激光在大气中传输的技术尚未成熟,目前激光通信主要在星间应用
激光通信技术的主要应用场景有星间、星空、星地、空空、空地与地地这六大激光通信,并逐渐向深空探测、水下通信扩展,用途越来越广。由于激光通信链路具有通信速率高、方向性强、保密性好、组网灵活以及终端体积小、重量轻、功耗低等特点,而且在大气中尚未突破技术瓶颈,所以目前在星间大量使用。
星链计划计划发射42000颗卫星,现已基本完成第一轨道层的组建工作。但星链计划过去对激光通信不是很感兴趣,只有几十颗卫星装备了激光链路,但是国外的技术积累更多,而且激光通信优点很多,是大趋势,马斯克也发文称2022年发射的所有starlink卫星都将配备激光星间链路。
2017年,我国新一代高轨技术试验卫星实践十三号搭载的激光通信终端,成功进行了国际首次高轨卫星对地高速激光双向通信试验。LaserFleet为「行云二号」01星(武汉号)和「行云二号」02星研制的低轨物联网星间激光通信载荷技术得到成功验证,实现了建链流程完整、遥测状态稳定的双向通信。我国卫星物联网星座实现了星间激光通信零的突破。
2.2 发展趋势——激光星间链路仍为主要应用场景,星地链路有望突破
2.2.1 星间激光链路是激光通信的主要应用场景
随着社会的发展和科技的进步,人们对空间资源的利用需求日益增加,许多国家和机构都提出了自己的空间计划,其中比较知名的包括已经建成的铱星、先进极高频(AEHF)等空间组网的卫星通信系统,以及一网(OneWeb)、星链(Starlink)等低轨互联网卫星星座。为了维护国家安全与促进国民经济,我国也提出了构建天地一体化信息网络的计划,并取得了一系列的研究成果。
由于中美科技战,中国5g技术被卡脖子,中美都要在6g的研发应用上大力发展,美国SpaceX计划发射四万多颗卫星形成空间互联网;英国政府也收购了一网;加拿大政府为telesat提供政策和财政支持。中国对空间互联网也非常重视和支持,提出了GW计划。
(资料来源:公开资料,本翼资本整理)
除此之外,激光通信不受国际电信联盟的监管,可以不受限制地使用,不需要昂贵的许可证。在发射卫星之前,如果采用射频通信技术就必须从想要发送射频波束的每个国家申请许可证并支付与每个许可制度相关的费用。激光通信不受国际电信联盟的监管,可以不受限制地使用,不需要昂贵的许可证。原因是其固有的小尺寸避免了干扰问题,并使未来不太可能进行任何限制性监管。因此激光通信技术在星间的应用也会使频谱资源的争夺放缓,未来甚至不需再去申请频谱已发射卫星。故此,在低轨卫星的不断成熟和发展下,激光通信作为卫星间的信息传输方式,将发挥重要作用。(5)微波短期仍为中高轨中继卫星通信主流,激光通信未来或能大量使用中继卫星系统是指利用地球同步轨道(GEO)卫星为高动态、大范围、高速率的各类低轨用户提供数据中继服务的数据传输系统,是建立天基信息网络的重要组成部分。空间激光通信具有大带宽、高速率、高保密、体积小等特点随着国内外各类天基信息系统的建设提速,高轨卫星作为星间数据中继节点,传输容量需求日益增长。激光通信链路能够充分满足中继卫星的功能要求,是实现高速数据中继业务的可行途径。国外在轨运行的高轨卫星激光链路以ESA“欧洲数据中继系统(EDRS)”为典型代表。EDRS系统是迄今为止唯一在轨商业化运行的激光星间链路,为低轨航天器用户提供数据中继服务。但高轨卫星激光通信技术技术没有低轨卫星成熟,目前暂时不是国家规划重点,而且由于高轨卫星本身对传输时效性要求不强,微波传输短期内可能不会被淘汰。所以尽管激光通信在高轨卫星中应用,但市场前景没有在低轨星座中强。因此激光通信会更多受益于未来低轨空间互联网的不断发展,会拥有更广阔的应用空间。2.2.2 星地激光通信技术有望突破,星间链路成功建成后,地面站数量可能会减少
因还没能突破激光在大气中的传播技术,目前星地通信的主要传输方式还是微波,但国内各个研究所都在研究激光技术的改进方案,届时将使星间激光通信成为可能。但同时专家指出,若成功打通星间链路,地面站的建设就不需那么多;如果星间链路未能没打通,可能一颗星基本就要设一颗地面站,地面站的规模反而更大。此外,地面站的建设还存在土地等资源的审批问题,建设周期也很长,所以专家预测未来可能会以少建地面站为前提将星间链路打通。因此星地激光链路的空间可能没有想象中的大。2.3 国网激光通信终端的市场规模测算
2015年,SpaceX公司提出StarLink计划,18年发射测试卫星。目前暂时还没有GW关于卫星发射的计划,本报告同时结合星链首批部署时间和国际电联的规则预测,中国国网可能2023年才能正式开始发射卫星。假设:1. 每年卫星发射数量:去年受疫情影响,星链计划发射了833颗卫星,今年星链5个月已经发射了13批次1.0版星链,累计约673颗卫星,按此比例,星链今年能发射1615颗卫星,能够负担31枚火箭的产能。中国因需在2027年11月之前将12992颗卫星部署完毕,时间紧迫,所以一定会以最大产能发射卫星,假设国网能在2023年产能和技术水平达到现在星链的同等水平,且2035年实现产能增加一倍,才能在2027年之前将卫星部署完毕。2. 每颗卫星上激光终端数量:一个卫星一般有4套激光发射接收终端,有3个可能是作为备份,1个是正常使用,且随着技术的进步未来一个卫星的终端数量可能是会下降的,但卫星型号一旦定型以后,它更改的可能性不是很大。本文认为,出于性能稳定以及国家对成本控制要求不高的考虑,在5年内转变型号的可能性不大,所以预计每个卫星会搭载4套激光终端。(但激光终端的数量应该在2~4个左右,最大的情况是4个)3. 激光终端价格:目前中国一个激光终端的价格要在三四百万,但随着生产规模的不断加大,激光终端价格也会大幅下降,后期可能会降到100多万。所以本文假设今年一个终端的价格为350万,可能到2030年已经下降到300万左右,之后每年下降,可能到2026年就可以达到预测的最低成本价150万。据测算到2027年,激光载荷市场规模将达到近800亿。表8 卫星发射及近地轨道激光发射接收终端需求数量测算(单位:万元)2.4 案例1:Mynaric德国激光通信终端制造商
2.4.1 历史沿革
Mynaric成立于2009年,由德国航空航天中心(DLR)的前员工创建,其目标是将数十年的无线激光通信应用于航空航天领域的经验商业化。
从2012年开始,Mynaric Lasercom GmbH(前Vialight Communications GmbH)与客户合作演示空对地和空对空场景,以推进技术进步并实现产品级成熟度。从那时起,Mynaric公司迅速在机载无线激光通信领域建立了国际声誉,并扩大了市场范围,吸纳了众多世界级的客户和供应商。
2016年,Mynaric扩大了业务,并在北美设立了办事处,为美国和加拿大的客户提供服务。总部位于美国亨茨维尔的Mynaric USA,Inc.(前Vialight Space Inc.)为美国客户提供特殊项目和必要的产品改进支持。美国分部积极参与Mynaric专门为近地轨道卫星星座开发的空间终端的开发。
2017年,Mynaric继续其发展道路,在德国证券交易所上市,以筹集增长资本进入批量生产。
2019年,Mynaric USA搬迁至洛杉矶,以便更接近美国的主要客户。Mynaric USA的举措还启动了北美主要市场的扩张计划,其中包括仅从美国境内采购的电子产品和软件。
2020年,CONDOR和鹰航空终端的第一批机组可供商业客户使用。蒂娜•加塔奥雷(Tina Ghataore)出任Mynaric USA首席商务官,美国分公司在大西洋彼岸开设了新的和扩建的设施,以监督美国境内采购的电子产品和软件的开发。Mynaric赢得了第一份美国政府合同,并将根据与美国国防机构的两份合同交付CONDOR卫星间链路终端的多个单元。
2.4.2 产品
CONDOR飞行终端:Mynaric的CONDOR飞行终端旨在将单个卫星以及位于低地球轨道上的数百颗甚至数千颗卫星组成的整个星座互联互通。它能够提供进出地面的超高宽带连接,它们是大规模和全球连接概念的关键要素,例如在地面提供互联网接入的低地轨道卫星星座和地球观测卫星,它们需要能够以成本的一小部分在更短的时间内将更多数据下游化。
(资料来源:Mynaric官网,本翼资本整理)
平台间链接:平台间链接提供了构成高空星座的众多无人机或气球之间的高速连接。它们是星座的数据高速公路——所谓的“骨干”——同时处理数百到数千名最终用户的汇总数据。在移动的平台上建立连接需要非常高的指向精度——相当于击中从一英里外从口袋里掉出来的硬币。(资料来源:Mynaric官网,本翼资本整理)
地面站:飞机、气球和无人机发送的激光通信信号由紧凑的空间光学地面站接收。光学地面站非常小,可以安装在面包车上,可以随时进行数据分析,甚至可以坐在建筑物屋顶上连接到现有基础设施。(资料来源:Mynaric官网,本翼资本整理)
地面空间站:空间光学店面站接收来自地球观测任务或卫星星座的激光通信信号,通常将其反馈给现有的地面网络基础设施进一步分发。他们需要在几秒钟内与空间中的对应方建立可靠的联系,因为低地球轨道上的卫星通常只能在固定位置看到几分钟。(资料来源:Mynaric官网,本翼资本整理)
2.4.3 财务情况
2020年,Mynaric报告年度收入增长52.9%,达到67.9万欧元(上一年度:44.4万欧元),在美国市场的收入大幅增长。该公司的订单情况与上一年相比又有了很大改善。公司有资格获得一定的政府补助金,用于资助开发活动和解决方案方法方面的创新工作。2020年政府补助增加到29.5万欧元(上一年度:14万欧元)。
图10 Mynaric利润表
(资料来源:2020年Mynaric年报,本翼资本整理)
Mynaric的CONDOR客户将在2021年上半年收到设备,并将继续与机载领域的主要客户合作,确定激光通信在无人机上大规模使用的部署路线图。图11 Mynaric收入情况
(资料来源:2020年Mynaric年报,本翼资本整理)
2021年Mynaric的生产目标是实现每年三位数的产品产量。2020年已经为实现2021年的生产目标奠定了基础。产品也将在2021年成熟,将以最快的速度改进机载和星载终端的第一个版本。Mynaric将重点转向外部,致力于在大西洋两岸开展更多的业务发展活动和培养团队。2.5 案例2:TESAT德国激光通信终端制造商
2.5.1 历史沿革
1971年,签署了国际通信卫星组织的第一个空间项目;1989年,TESAT成为德国电信科珀尼库卫星主要承包商;2006年:TESAT成为德国国防军第一颗卫星SAR-Lupe的主要供应商;2013年,TESAT为Alphasat提供第一个光学中继有效载荷;2014年,利用Alphasat建立第一个GEO-/LEO-ISL(地球同步轨道-低轨星间链路),距离为4万公里;2018年,TESAT建立了超过1万个在太空的激光链接;2019年,第一个CubeLCT生产、测试并交付给客户。2.5.2 产品
TESAT可以为不同的需求提供合适的激光终端。LCT135可以在高达80,000公里的距离上传输高达1.8 Gbps,安全、快速且完全无故障。通过这种地球静止骨干,TESAT技术使全球数据能够近实时传输。对于低地球轨道(LEO)的应用,有SmartLCT,它可以部署在更小、更轻的卫星上,节省巨大的重量和尺寸。SmartLCT在保持高达1.8 Gbps的高数据速率的同时,在长达45,000公里的距离上传输数据,重量仅为30公斤左右。对于更小的卫星,TESAT的激光组合提供TOSIRIS和CubeLCT,它们可以以10 Gbps(TOSIRIS)或100 Mbps(CubeLCT)的速度传输直接到地球的数据。特别令人印象深刻的是相关的体重减轻。已经很小的TOSIRIS只有8公斤,而边缘长度只有10 cm的CubeLCT只有360克。开创性的特点是,TESAT LCT已经帮助将卫星的接收能力提高高达50%,因为可以在更短的时间内传输更多数据。这使得在短短5天内重新记录整个全球陆地(1.5亿平方公里),同时在不到15分钟内将其提供。表9 TESET产品特性对比END
特色栏目
免责
声明
本文注明来源为其他媒体或网站的文/图等稿件均为转载,如涉及版权等问题,请作者在20个工作日之内联系我们,我们将协调给予处理。最终解释权归光电汇所有。
本文版权所有,公众号如需转载请联系oepn@siom.ac.cn
商务合作,请联系
季先生 18018304797
觉得有用,请点这里↓↓↓